= Review / Opinion Lab members underlined * = joint first authors ^ = joint senior authors
Key publications are highlighted in yellow.
In the oven
Integration across all scales: organ, tissue, genomeIntegrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer M. Crispin-Ortuzar, R. Woitek, E. Moore, M. Reinius, L. Beer, V. Bura, L. Rundo, C. McCague, S. Ursprung, L. Escudero Sanchez, P. Martin-Gonzalez, F. Mouliere, D. Chandrananda, J. Morris, T. Goranova, A.M. Piskorz, N. Singh, A Sahdev, R. Pintican, M. Zerunian, H. Addley, M. Jimenez-Linan, F. Markowetz^, E. Sala^, J.D. Brenton^
medRxiv:2021.07.22.21260982
Rascal to the rescueAbsolute copy number fitting from shallow whole genome sequencing data C.M. Sauer, M.D. Eldridge, M. Vias, J.A. Hall, S. Boyle, G. Macintyre, T. Bradley, F. Markowetz, J.D. Brenton
bioRxiv:2021.07.19.452658v1
Step-by-step tutorialPathML: A unified framework for whole-slide image analysis with deep learning A.G. Berman, W.R. Orchard, M. Gehrung, F. Markowetz medRxiv:2021.07.07.21260138
2022
A pan-cancer compendium of chromosomal instability Drews RM, Hernando B, Tarabichi M, Haase K, Lesluyes T, Smith PS, Morrill Gavarró L, Couturier DL, Liu L, Schneider M, Brenton JD, Van Loo P, Macintyre G^, Markowetz F^
Nature. 2022 Jun;606(7916):976-983.
PMID:35705807 | doi:10.1038/s41586-022-04789-9
The Genomic Landscape of Early-Stage Ovarian High-Grade Serous Carcinoma Cheng Z, Mirza H, Ennis DP, Smith P, Morrill Gavarró L, Sokota C, Giannone G, Goranova T, Bradley T, Piskorz A, Lockley M; BriTROC-1 Investigators, Kaur B, Singh N, Tookman LA, Krell J, McDermott J, Macintyre G, Markowetz F, Brenton JD, McNeish IA
Clin Cancer Res. 2022 Jul 1;28(13):2911-2922.
PMID:35398881 | doi:10.1158/1078-0432.CCR-21-1643
Development of a miRNA-based classifier for detection of colorectal cancer molecular subtypes Adam RS, Poel D, Ferreira Moreno L, Spronck JMA, de Back TR, Torang A, Gomez Barila PM, Ten Hoorn S, Markowetz F, Wang X, Verheul HMW, Buffart TE, Vermeulen L
Mol Oncol 2022 Mar 17.
PMID:35298091 | doi:10.1002/1878-0261.13210
Computational pathology aids derivation of microRNA biomarker signals from Cytosponge samples Masqué-Soler N, Gehrung M, Kosmidou C, Li X, Diwan I, Rafferty C, Atabakhsh E, Markowetz F, Fitzgerald RC
EBioMedicine. 2022 Feb;76:103814. Epub 2022 Jan 17.
PMID:35051729 | doi:10.1016/j.ebiom.2022.103814
Multi-omic machine learning predictor of breast cancer therapy response S-J. Sammut, M. Crispin-Ortuzar, S-F. Chin, E. Provenzano, H.A. Bardwell, W. Ma, W. Cope, A. Dariush, S-J. Dawson, J.E. Abraham, J. Dunn, L. Hiller, J. Thomas, D.A. Cameron, J.M.S. Bartlett, L. Hayward, P.D. Pharoah, F. Markowetz, O.M. Rueda, H.M. Earl, C. Caldas
Nature. 2022 Jan;601(7894):623-629. Epub 2021 Dec 7.
PMID:34875674 | doi:10.1038/s41586-021-04278-5
2021
Reproducibility standards for machine learning in the life sciences B.J. Heil, M.M. Hoffman, F. Markowetz, S-I Lee, C.S. Greene, S.C. Hicks
Nature Methods, 2021
PMID:34462593 | doi:10.1038/s41592-021-01256-7
.Predictive modelling of highly multiplexed tumour tissue images by graph neural networks P. Martin Gonzalez, M. Crispin Ortuzar, F. Markowetz MICCAI workshop 'Topological Data Analysis', accepted
medRxiv 2021.07.28.21261179 | doi:10.1101/2021.07.28.21261179
Artificial and natural intelligence - hand in handTriage-driven diagnosis of Barrett esophagus for early detection of esophageal adenocarcinoma using deep learning M. Gehrung, M. Crispin Ortuzar, A. Berman, M. O'Donovan, R.C. Fitzgerald, F. Markowetz Nature Medicine, 2021 May;27(5):833-841
PMID:33859411 | doi:10.1038/s41591-021-01287-9 | medRxiv:2020.07.16.20154732
Automated FISH spot countingFrenchFISH: Poisson models for quantifying DNA copy-number from fluorescence in situ hybridisation of tissue sections G. Macintyre, A.M. Piskorz, A. Berman, E. Ross, D.B. Morse, K. Yuan, D. Ennis, J.A. Pike, T. Goranova, I. McNeish, J.D. Brenton, F. Markowetz JCO Clinical Cancer Informatics 2021 Feb;5:176-186.
PMID:33570999 | bioRxiv:487926 | doi:10.1200/CCI.20.00075
Another great PCAWG collaborationPortraits of genetic intra-tumour heterogeneity and subclonal selection across cancer types S.C. Dentro*, I. Leshchiner*, K. Haase*, M. Tarabichi*, J. Wintersinger*, A.G. Deshwar*, K. Yu*, Y. Rubanova*, G. Macintyre*, I. Vazquez-Garcia, K. Kleinheinz, D.G. Livitz, S. Malikic, N. Donmez, S. Sengupta, J. Demeulemeester, P. Anur, C. Jolly, M. Cmero, D. Rosebrock, S. Schumacher, Y. Fan, M. Fittall, R.M. Drews, X. Yao, J. Lee, M. Schlesner, D.J. Adams, G. Getz, P.C. Boutros, M. Imielinski, R. Beroukhim, S.C. Sahinalp, Y. Ji, M. Peifer, I. Martincorena, F. Markowetz, V. Mustonen, Ke Yuan, M. Gerstung, P.T. Spellman, W. Wang, Q.D. Morris, D.C. Wedge, P. Van Loo, PCAWG Evolution and Heterogeneity Working Group, PCAWG network
Cell, 2021 Apr 15;184(8):2239-2254.e39
PMID:33831375 | bioRxiv:312041 | doi:10.1101/312041
2020
How to biopsy radiological habitats
Ultrasound-guided targeted biopsies of CT-based radiomic tumour habitats: technical development and initial experience in metastatic ovarian cancer L. Beer*, P. Martin-Gonzalez*, M. Delgado-Ortet, M. Reinius, L. Rundo, R. Woitek, S. Ursprung, L. Escudero, H. Sahin, I-G. Funingana, J-E Ang, M. Jimenez-Linan, T. Lawton, G. Phadke, S. Davey, N.Q. Nguyen, F. Markowetz, J.D. Brenton, M. Crispin-Ortuzar, H. Addley, E. Sala
Eur Radiol. 2020 Dec 14.
PMID:33315123 | doi:10.1007/s00330-020-07560-8
.
Intestinal region-specific Wnt signalling profiles reveal interrelation between cell identity and oncogenic pathway activity in cancer development R.S. Adam, S.M van Neerven, C. Pleguezuelos-Manzano, S. Simmini, N. Léveillé, N.E de Groot, A.N. Holding, F. Markowetz, L. Vermeulen
Cancer Cell Int. 2020 Dec 3;20(1):578.
PMID:33292279 | doi:10.1186/s12935-020-01661-6
How to use radiogenomics to generate virtual biopsies
Integrative radiogenomics for virtual biopsy and treatment monitoring in ovarian cancer P. Martin-Gonzalez, M. Crispin-Ortuzar L. Rundo, M. Delgado-Ortet, M. Reinius, L. Beer, R. Woitek, S. Ursprung, H. Addley, J. D. Brenton, F. Markowetz, E. Sala
Insights into Imaging volume 11, Article number: 94 (2020)
PMID:32804260 | doi:10.1186/s13244-020-00895-2
automatically produce tumour-specific 3D-printed moulds
Three-Dimensional Printed Molds for image-guided surgical biopsies: an open source computational platform M. Crispin-Ortuzar, M. Gehrung, S. Ursprung, A.B. Gill, A.Y. Warren, L. Beer, F.A. Gallagher, T.J Mitchell, I.A. Mendichovszky, A.N. Priest, G.D. Stewart, E. Sala, F. Markowetz JCO Clinical Cancer Informatics, 2020 :4, 736-748
PMID:32804543 | doi:10.1200/CCI.20.00026 | bioRxiv:658831v2
Ideal for multi-sample inference of tumor evolution
Allele-specific multi-sample copy number segmentation E.M. Ross*, K. Haase*, P. Van Loo, F. Markowetz Bioinformatics, btaa538
PMID:32449758 | doi:10.1093/bioinformatics/btaa538 | bioRxiv:166017
.
Tissue-specific and interpretable sub-segmentation of whole tumour burden on CT images by unsupervised fuzzy clustering L. Rundo, L. Beer, S. Ursprung, P. Martin Gonzalez, F. Markowetz, J.D. Brenton, M. Crispin Ortuzar, E. Sala, R. Woitek
Computers in Biology and Medicine, Volume 120, May 2020, 103751
PMID:32421652 | doi:10.1016/j.compbiomed.2020.103751
We did the CN signatures
Unraveling Tumor-Immune Heterogeneity in Advanced Ovarian Cancer Uncovers Immunogenic Effect of Chemotherapy A. Jiménez-Sánchez*, P. Cybulska*, K. Lavigne*, S. Koplev, O. Cast, D-L Couturier, D. Memon, P. Selenica, I. Nikolovski, Y. Mazaheri, Y. Bykov, F.C. Geyer, G. Macintyre, L. Morrill Gavarró, R.M. Drews, M.B. Gill, A.D. Papanastasiou, R.E. Sosa, R.A. Soslow, T. Walther, R. Shen, D.S. Chi, K.J. Park, T. Hollmann, J.S. Reis-Filho, F. Markowetz, P. Beltrao, H.A. Vargas, D. Zamarin, J.D. Brenton, A. Snyder, B. Weigelt, E. Sala, M.L. Miller
Nature Genetics, 52, pages582–593 (2020)
PMID:32483290 | doi:10.1038/s41588-020-0630-5
Analyzing subclonal structural variants
SVclone: inferring structural variant cancer cell fraction M. Cmero, C.S. Ong, K. Yuan, J. Schröder, K. Mo, PCAWG Evolution and Heterogeneity Working Group, N.M. Corcoran, A.T. Papenfuss, C.M. Hovens, F. Markowetz, G. Macintyre Nature Comms. 11, Article number: 730 (2020)
PMID:32024845 | bioRxiv:172486 | doi:10.1038/s41467-020-14351-8
There we are, right in the middle of it!
The evolutionary history of 2,658 cancers M. Gerstung*, C. Jolly*, I. Leshchiner*, SC. Dentro*, S. Gonzalez, T.J. Mitchell, Y. Rubanova, P. Anur, D. Rosebrock, K. Yu, M. Tarabichi, A. Deshwar, J. Wintersinger, K. Kleinheinz, I. Vázquez-García, K. Haase, S. Sengupta, G. Macintyre, S. Malikic, N. Donmez, D.G. Livitz, M. Cmero, J. Demeulemeester, S. Schumacher, Y. Fan, X. Yao, J. Lee, M. Schlesner, P.C. Boutros, D.D. Bowtell, H. Zhu, G. Getz, M. Imielinski, R. Beroukhim, S.C. Sahinalp, Y. Ji, M. Peifer, F. Markowetz, V. Mustonen, K. Yuan, W. Wang, Q.D. Morris, P.T. Spellman^, D.C. Wedge^, Peter Van Loo^, on behalf of the PCAWG Evolution and Heterogeneity Working Group and the PCAWG network.
Nature 578, pages122–128 (2020)
PMID:32025013 | bioRxiv:161562 | doi:10.1038/s41586-019-1907-7
2019
CRISPR, single cells, machine learning - what more do you want?
Data generation and network reconstruction strategies for single cell transcriptomic profiles of CRISPR-mediated gene perturbations A.N. Holding, H.V. Cook, F. Markowetz Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, Nov 2019
PMID:31756390 | doi:10.1016/j.bbagrm.2019.194441
...
Characterizing tumor invasiveness of glioblastoma using multiparametric magnetic resonance imaging Li C, Wang S, Yan JL, Torheim T, Boonzaier NR, Sinha R, Matys T, Markowetz F, Price SJ
J Neurosurg. 2019 Apr 26:1-8.
PMID:31026822 | doi:10.3171/2018.12.JNS182926
Master Regulator Analysis for ChIP-seq data
VULCAN integrates ChIP-seq with patient-derived co-expression networks to identify GRHL2 as a key co-regulator of ERa at enhancers in breast cancer A.N. Holding*, F.M. Giorgi*, A. Donnelly, A.E Cullen, L.A. Selth, F. Markowetz Genome Biology, 2019 20:91
PMID:31084623 | bioRxiv:266908 | doi:10.1186/s13059-019-1698-z
ISMB 2019
Estimating the predictability of cancer evolution SR Hosseini, R Diaz-Uriarte, F Markowetz, N Beerenwinkel
Bioinformatics, 35(14), July 2019, Pages i389–i397
PMID:31510665 | doi:10.1093/bioinformatics/btz332
Adaptive immune response co-evolves with metastatic genomes
The genomic and immune landscapes of lethal metastatic breast cancer L De Mattos-Arruda*, S-J Sammut*, E.M. Ross, R. Bashford-Rogers, E. Greenstein, H. Markus, S. Morganella, Y. Teng, Y. Maruvka, B. Pereira, O.M. Rueda, S-F Chin, T. Contente-Cuomo, R. Mayor, A. Arias, H.R. Ali, W. Cope, D. Tiezzi, D. Reshef, N. Ciriaco, E. Martinez-Saez, V. Peg, S. Ramon y Cajal, J. Cortes, G. Vassiliou, G. Getz, S. Nik-Zainal, M. Murtaza, N. Friedman, F. Markowetz, J. Seoane^, Carlos Caldas^
Cell Reports, 27(9), P2690-2708.e10, May 28, 2019
PMID:31141692 | doi:10.1016/j.celrep.2019.04.098
Immune differences even if there are no genomic differences
Immuno-phenotypes of Pancreatic Ductal Adenocarcinoma: Metaanalysis of transcriptional subtypes I. de Santiago, C. Yau, M. Middleton, M. Dustin, F. Markowetz, S. Sivakumar
International Journal of Cancer, 2019 Feb 5
PMID:30720864 | doi:10.1002/ijc.32186 | bioRxiv:182261
Habitats in the brain
Low perfusion compartments in glioblastoma quantified by advanced magnetic resonance imaging: correlation with patient survival C. Li, J-L Yan, T. Torheim, M.A. McLean, N.R. Boonzaier, Y. Huang, B.R.J. Van Dijken, T. Matys, F. Markowetz, S.J. Price
Radiotherapy and Oncology, 2019 May;134:17-24.
PMID:31005212 | bioRxiv:180521 | doi:10.1101/180521
Decoding the Interdependence of Multiparametric Magnetic Resonance Imaging to Reveal Patient Subgroups Correlated with Survivals C. Li, S. Wang, P. Liu, T. Torheim, N.R. Boonzaier, B.R. van Dijken, C.B. Schönlieb, F. Markowetz, S.J. Price
Neoplasia. 2019 Mar 31;21(5):442-449.
PMID:30943446 | doi:10.1016/j.neo.2019.03.005
Radiomics in brain cancer
Multi-parametric and multi-regional histogram analysis of MRI: modality integration reveals imaging phenotypes of glioblastoma C. Li, S. Wang, A. Serra, T. Torheim, J-L. Yan, N.R. Boonzaier, Y. Huang, T. Matys, M.A. McLean, F. Markowetz, S.J. Price
European Radiology, 2019 Feb 1
PMID:30707277 | doi:10.1007/s00330-018-5984-z
2018
Challenging the central dogma of ER biology
Genome-wide Estrogen Receptor-alpha activation is sustained, not cyclical A.N. Holding, A.E. Cullen, F. Markowetz eLife, 2018;7:e40854
PMID:30457555 | doi:10.7554/eLife.40854 | bioRxiv:398925
We hate to contradict you, but ...
Neutral tumor evolution? M. Tarabichi, I. Martincorena, M. Gerstung, F. Markowetz, PT Spellman, QD Morris, OC Lingjaerde, DC Wedge, P. Van Loo
Nature Genetics, Nov 2018
PMID:30374075 | bioRxiv:158006 | doi:10.1101/158006
Heterogeneity in the brain
Intratumoral heterogeneity of tumor infiltration of glioblastoma revealed by joint histogram analysis of diffusion tensor imaging C. Li, S. Wang, J-L Yan, R.J. Piper, H. Liu, T. Torheim, H. Kim, N.R. Boonzaier, R. Sinha, T. Matys, F. Markowetz, S.J. Price
Neurosurgery, 2018 Sep 17 nyy388
PMID:30239840 | doi:10.1093/neuros/nyy388 | bioRxiv:187450
clinical impact of intra-tumor heterogeneity of ER protein expression, HER2 protein expression, and HER2 gene copy number alterations
Intra-tumor heterogeneity defines treatment-resistant HER2+ breast tumors. I.H. Rye*, A. Trinh*, A. Satersdal, D. Nebdal, OC. Lingjaerde, V. Almendro, K. Polyak, A-L. Borresen-Dale, A. Helland, F. Markowetz^, H. Russnes^
Molecular Oncology, 2018 Aug 22
PMID:30133130 | doi:10.1002/1878-0261.12375 | bioRxiv:297549
A serendipitous metabolic target for glioblastoma
The small molecule KHS101 induces bioenergetic dysfunction in glioblastoma cells through inhibition of mitochondrial HSPD1 E.S. Polson, V.B. Kuchler, C. Abbosh, E.M. Ross, R.K. Mathew, H.A. Beard, B. Da Silva, A.N. Holding, S. Ballereau, E. Chuntharpursat-Bon, J. Williams, H.B.S. Griffiths, H Shao, A. Patel, A.J. Davies, A. Droop, P. Chumas, S.C. Short, M. Lorger, J.E. Gestwicki, L.D. Roberts, R.S. Bon, S.J. Allison, S. Zhu, F. Markowetz, H. Wurdak
Science Translational Medicine, 2018 Aug 15;10(454). pii: eaar2718
PMID:30111643 | doi:10.1126/scitranslmed.aar2718 | bioRxiv:205203
Deconstructing the mutational forces shaping the complex genomes of ovarian cancers
Copy-number signatures and mutational processes in ovarian carcinoma G. Macintyre*, T. Goranova*, D. De Silva, D. Ennis, A.M. Piskorz, M. Eldridge, D. Sie, L-A. Lewsley, A. Hanif, C. Wilson, S. Dowson, R.M. Glasspool, M. Lockley, E. Brockbank, A. Montes, A. Walther, S. Sundar, R. Edmondson, G.D. Hall, A. Clamp, C. Gourley, M. Hall, C. Fotopoulou, H. Gabra, J. Paul, A. Supernat, D. Millan, A. Hoyle, G. Bryson, C. Nourse, L. Mincarelli, L. Navarro Sanchez, B. Ylstra, M. Jimenez-Linan, L. Moore, O. Hofmann, F. Markowetz^, I.A. McNeish^, J.D. Brenton^
Nature Genetics, 50, 1262–1270 (2018)
PMID:30104763 | doi:10.1038/s41588-018-0179-8 | bioRxiv:174201
Quantitative RIME
A quantitative mass spectrometry-based approach to monitor the dynamics of endogenous chromatin-associated protein complexes E Papachristou, K Kishore, A Holding, K Harvey, T Roumeliotis, C Chilamakuri, S Omarjee, KM Chia, A Swarbrick, E Lim, F Markowetz, M Eldridge, R Siersbaek, C D'Santos, J Carroll
Nature Communications, 2018 Jun 13;9(1):2311.
PMID:29899353 | doi:10.1038/s41467-018-04619-5
Peak height matters.
Parallel factor ChIP provides essential internal control for quantitative differential ChIP-seq M.J. Guertin, A.E. Cullen, F. Markowetz, A.N. Holding Nucleic Acid Research, Volume 46, Issue 12, 6 July 2018, Pages e75
PMID:29672735 | doi:10.1093/nar/gky252 | bioRxiv:182261
Inferring a network from data on nodes, edges and paths
Estimating cellular pathways from an ensemble of heterogeneous data sources A.M. Franks, F. Markowetz^, E.M. Airoldi^
Annals of Applied Statistics, 2018, Vol. 12, No. 3, 1361-1384.
doi:10.1214/16-AOAS915 | arXiv:1406.5799
2017
Tissue heterogeneity predicts progression
Analysis of heterogeneity in T2-weighted MR images can differentiate pseudoprogression from progression in glioblastoma. TC Booth, TJ Larkin, Y Yuan, MI Kettunen, SN Dawson, D Scoffings, HC Canuto, SL Vowler, H Kirschenlohr, MP Hobson, F Markowetz, S Jefferies, KM Brindle
PLoS ONE, 2017 May 17;12(5):e0176528
PMID:28520730 | doi:10.1371/journal.pone.0176528
What's downstream of a genetic interaction?
Inferring modulators of genetic interactions with epistatic Nested Effects Models M. Pirkl*, M. Diekmann*, M. van der Wees, H. Fröhlich, N. Beerenwinkel, F. Markowetz PLoS Comput Biol, 2017; 13(4):e1005496.
PMID:28406896 | doi:10.1371/journal.pcbi.1005496
Rigorous removal of biases from ChIP-seq data
BaalChIP: Bayesian analysis of allele-specific transcription factor binding in cancer genomes I. de Santiago*, W. Liu*, K. Yuan, M. O'Reilly, CSR Chilamakuri, BAJ Ponder, KB Meyer^, F. Markowetz^
Genome Biology, 2017 Feb 24;18(1):39
PMID:28235418 | doi:10.1186/s13059-017-1165-7 | bioRxiv:093393
Biology and subtypes, we got it all.
Master regulators of oncogenic KRAS response in pancreatic cancer: an integrative network biology analysis S. Sivakumar*, I. de Santiago*, L. Chlon*, F. Markowetz PLOS Medicine, 2017 Jan 31;14(1):e1002223.
PMID:28141826 | doi:10.1371/journal.pmed.1002223
Diverse and surprising metastatic patterns and how to spot them
How subclonal modelling is changing the metastatic paradigm G. Macintyre, P. Van Loo, N.M. Corcoran, D.C. Wedge, F. Markowetz^, C.M. Hovens^
Clinical Cancer Research, 2017 Feb 1;23(3):630-635
PMID:27864419 | doi:10.1158/1078-0432.CCR-16-0234
IHC-based classifier to validate the prognostic and predictive value of molecular CRC subtypingPractical and robust identification of molecular subtypes in colorectal cancer by immunohistochemistry A. Trinh, K. Trumpi, F. De Sousa E Melo, X. Wang, J.H. de Jong, E. Fessler, P.J.K. Kuppen, M.S. Reimers, M. Swets, M. Koopman, I.D. Nagtegaal, M. Jansen, G.K.J. Hooijer, G.J.A. Offerhaus, O. Kranenburg, C.J. Punt, J.P. Medema, F. Markowetz, L. Vermeulen
Clinical Cancer Research 2017 Jan 15;23(2):387-398
PMID:27459899 | doi:10.1158/1078-0432.CCR-16-0680
2016
Patterns of Immune Infiltration in Breast Cancer and their Clinical Implications: A Gene Expression-Based Retrospective Study R. Ali, L. Chlon, P. Pharoah, F. Markowetz, C. Caldas
PLOS Medicine, 2016 Dec 13;13(12):e1002194
PMID:27959923 | doi:10.1371/journal.pmed.1002194
CLOE can capture both the acquisition and the loss of mutations, as well as episodes of convergent evolutionA phylogenetic latent feature model for clonal deconvolution F. Marass, F. Mouliere, K. Yuan, N. Rosenfeld, F. Markowetz Annals of Applied Statistics, Volume 10, Number 4 (2016), 2377-2404.
doi:10.1214/16-AOAS986 | arXiv:1604.01715
Phylogenetic inference tailored to the size and noise of current single cell dataOncoNEM: Inferring tumour evolution from single-cell sequencing data E.M. Ross and F. Markowetz Genome Biology 2016, 17:69
PMID:27083415 | doi:10.1186/s13059-016-0929-9
Accumulated metabolites of hydroxybutyric acid serve as diagnostic and prognostic biomarkers of high-grade serous ovarian carcinomas M. Hilvo, I. de Santiago, P. Gopalacharyulu, W.D. Schmitt, J. Budczies, M. Kuhberg, M. Dietel, T. Aittokallio, F. Markowetz, C. Denkert, J. Sehouli, C. Frezza, S. Darb-Esfahani, I. Braicu
Cancer Research, 2016 Feb 15;76(4):796-804
PMID:26685161 | doi:10.1158/0008-5472.CAN-15-2298
How do germline and somatic genetic events combine to influence cancer development?Regulators of genetic risk of breast cancer identified by integrative network analysis M.A.A. Castro, I. de Santiago, T.M. Campbell, C. Vaughn, T.E. Hickey, E. Ross, W.D. Tilley, F. Markowetz, B.A.J. Ponder and K.B. Meyer
Nature Genetics, 2016 Jan;48(1):12-21
PMID:26618344 | doi:10.1038/ng.3458
Software: BitPhylogenyBitPhylogeny: A probabilistic framework for reconstructing intra-tumor phylogenies K. Yuan*, T. Sakoparnig*, F. Markowetz^, N. Beerenwinkel^
Genome Biology, 2015, 16:36
PMID:25786108 | doi:10.1186/s13059-015-0592-6
Heterogeneity goes translational! PLoS Med Editorial Press release Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic reconstruction R.F. Schwarz, C.K.Y. Ng, S.L. Cooke, S. Newman, J. Temple, A.M. Piskorz, D. Gale, K. Sayal, M. Murtaza, P.J Baldwin, N. Rosenfeld, H.M. Earl, E. Sala, M. Jimenez-Linan, C.A. Parkinson, F. Markowetz^, J.D. Brenton^
PLoS Medicine, 2015 Feb 24;12(2):e1001789.
PMID:25710373 | doi:10.1371/journal.pmed.1001789
The first book to comprehensively cover the field of systems genetics.Systems Genetics - linking genotypes and phenotypes Florian Markowetz and Michael Boutros (eds.)
Cambridge University Press
July 2015
more info
Including as chapters:
An Introduction to Systems Genetics.F Markowetz and M Boutros [ free PDF ]
Joining the dots - network analysis of gene perturbation data.X Wang, K Yuan, F Markowetz
Everything you ever wanted to know about tumour evolution but were too afraid to ask.Cancer evolution: mathematical models and computational inference N. Beerenwinkel, R.F. Schwarz, M. Gerstung, F. Markowetz Systematic Biology, 2015 Jan;64(1):e1-25.
PMID:25293804 | doi:10.1093/sysbio/syu081
2014
Images + genomics = awesome! GB research highlight Press releaseCombined image and genomic analysis of high-grade serous ovarian cancer reveals PTEN loss as a common driver event and prognostic classifier F.C. Martins*, I. de Santiago*, A. Trinh*, J. Xian, A. Guo, K. Sayal, M. Jimenez-Linan, S. Deen, K. Driver, M. Mack, J. Aslop, P.D. Pharoah, F. Markowetz^, J.D. Brenton^
Genome Biology, 2014, 15:526
PMID:25608477 | doi:10.1186/s13059-014-0526-8
Software: GoIFISHGoIFISH: a system for the quantification of single cell heterogeneity from IFISH images A. Trinh, I.H. Rye, V. Almendro, A. Helland, H.G. Russnes^, F. Markowetz^ Genome Biology, 2014, 15:442
PMID:25168174 | doi:10.1186/s13059-014-0442-y
Rigorous implementation of an intuitive measure of functional association. Software: SANTASANTA: quantifying the functional content of molecular networks A. Cornish, F. Markowetz PLoS Comp Bio 2014, 10(9):e1003808.
PMID:25210953 | doi:10.1371/journal.pcbi.1003808 | arXiv:1407.4658
HM-NEM = HMM + NEMReconstructing evolving signaling networks by Hidden Markov Nested Effects Models X. Wang, K. Yuan, C. Hellmayr, W. Liu, F. Markowetz Annals of Applied Statistics, Volume 8, Number 1 (2014), 1-647
doi:10.1214/13-AOAS696 | PDF
2013
Review articleDissecting cancer heterogeneity - an unsupervised classification approach X. Wang, F. Markowetz, F.D. Melo, J.P. Medema, L. Vermeulen
The International Journal of Biochemistry & Cell Biology pii: S1357-2725(13)00282-3 PMID:24004832 | doi:10.1016/j.biocel.2013.08.014
Mechanisms behind FGFR2, the breast cancer GWAS top hitMaster regulators of FGFR2 signalling and breast cancer risk M.N.C. Fletcher*, M.A.A. Castro*, X. Wang, I. de Santiago, M. O'Reilly, S-F. Chin, O.M. Rueda, C. Caldas, B.A.J. Ponder, F Markowetz^, K.B. Meyer^
Nature Communications 4:2464 (2013) PMID:24043118 | doi:10.1038/ncomms3464
More here: Nature Rev Cancer Nature Rev Clin Onc Nature Rev GastroPoor prognosis colon cancer is defined by a distinct molecular subtype and develops from serrated precursor lesions F. De Sousa Mello*, X. Wang*, M. Jansen, E. Fessler, A. Trinh, L.P. de Rooij, J.H. de Jong, O.J. de Boer, R. van Leersum, M.F. Bijlsma, H Rodermond, M. van der Heijden, C.J. van Noesel, J.B. Tuynman, E. Dekker, F. Markowetz, J.P. Medema^, L. Vermeulen^
Nature Medicine, 2013 May;19(5):614-8. PMID:23584090 | doi:10.1038/nm.3174
More here: Nature Outlook 2013 GenomeWeb CRUK press releaseQuantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling Y. Yuan, H. Failmezger, O.M. Rueda, H.R. Ali, S. Gräf, S-F. Chin, R.F. Schwarz, C Curtis, M.J. Dunning, H. Bardwell, N. Johnson, S. Doyle, G. Turashvili, E. Provenzano, S. Aparicio, C. Caldas, F. Markowetz Science Translational Medicine, 4, 157ra142 (2012) PMID:23100629 | doi:10.1126/scitranslmed.3004330
Companion paper to Mulder et al, Nat Cell Bio 2012. Software: PANRPosterior association networks and functional modules inferred from rich phenotypes of gene perturbations X. Wang, M.A. Castro, K.W. Mulder^, F. Markowetz^
PLoS Comp Bio 8(6): e1002566 PMID:22761558 | doi:10.1371/journal.pcbi.1002566
see also Wang et al, PLoS Comp Bio 2012 Data: Mulder2012
More here News and ViewsDiverse epigenetic strategies interact to control epidermal differentiation K.W. Mulder, X. Wang, C. Escriu, Y. Ito, R.F. Schwarz, J. Gillis, G. Sirokmany, G. Donati, S. Uribe-Lewis, P. Pavlidis, A. Murrell, F. Markowetz, F. Watt
Nature Cell Biology 14(7), 753-763 (2012) PMID:22729083 | doi:10.1038/ncb2520
Network Data Integr- ation, Analysis, and Visualization Software: RedeRRedeR: R/Bioconductor package for representing modular structures, nested networks and multiple levels of hierarchical associations M.A. Castro, X. Wang, M.N.C. Fletcher, K.B. Meyer, F. Markowetz Genome Biology 2012, 13:R29 PMID:22531049 | doi:10.1186/gb-2012-13-4-r29
More here: Nature Rev Cancer Cancer Discovery BBC News ABC News @ youtube CRUK video @ youtubeThe genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups C. Curtis*, S.P. Shah*, S.-F. Chin*, G. Turashvili*, O.M. Rueda, M.J. Dunning, D. Speed, A.G. Lynch, S. Samarajiwa, Y. Yuan, S. Gräf, G. Ha, G. Haffari, A. Bashashati, R. Russell, S. McKinney, METABRIC Group, A. Langerød, A. Green, E. Provenzano, G. Wishart, S. Pinder, P. Watson, F. Markowetz, L. Murphy, I. Ellis, A. Purushotham, A.-L. Børresen-Dale, J.D. Brenton, S. Tavaré, C. Caldas^ and S. Aparicio^
Nature 486, 7403 (2012) PMID:22522925 | doi:10.1038/nature10983
2011
For each patient we check concordance of signals in different data when assigning them to clusters. Software: PSDFPatient-specific data fusion defines prognostic cancer subtypes Y. Yuan*, R. S. Savage*, F. Markowetz PLoS Comp Bio 7(10): e1002227 PMID:22028636 | doi:10.1371/journal.pcbi.1002227
Software: DANCEPenalized regression elucidates aberration hotspots mediating subtype-specific transcriptional responses in breast cancer Y. Yuan, O. M. Rueda, C. Curtis, F. Markowetz Bioinformatics. 2011 Oct 1;27(19):2679-85. PMID:21804112 | doi:10.1186/10.1093/bioinformatics/btr450
Differential C3NET reveals disease networks of direct physical interactions G. Altay, M. Asim, F. Markowetz, D. E. Neal
BMC Bioinformatics 2011, 12:296 PMID:21777411 | doi:10.1186/1471-2105-12-296
Conference version won best paper award at IEEE BIBM 2010A sparse regulatory network of copy-number driven gene expression reveals putative breast cancer oncogenes Y. Yuan, C. Curtis, C. Caldas, F. Markowetz IEEE/ACM Trans Comput Biol Bioinform. 2011 Jul 20 PMID:21788678 | doi:10.1109/TCBB.2011.105 | arXiv:1010.1409
Software: jodaDeregulation upon DNA damage revealed by joint analysis of context-specific perturbation data E. Szczurek, F. Markowetz, Irit Gat-Viks, P. Biecek, J. Tiuryn, M. Vingron
BMC Bioinformatics 2011, 12:249 PMID:21693013 | doi:10.1186/1471-2105-12-249
Software: HTSanalyzeRHTSanalyzeR: an R/Bioconductor package for integrated network analysis of high-throughput screens X. Wang*, C. Terfve*, J.C. Rose, F. Markowetz Bioinformatics (2011) 27 (6): 879-880 PMID:21258062 | doi:10.1093/bioinformatics/btr028
2010
Machine Learning meets evolution: Finite state transducer beat comp- etitors in phylogenetic inference.Evolutionary distances in the twilight zone - a rational kernel approach R. F. Schwarz, W. Fletcher, F. Förster, B. Merget, M. Wolf, J. Schultz, F. Markowetz PLoS One, 2010 Dec 31;5(12):e15788 PMID:21209825 | doi:10.1371/journal.pone.0015788 | arXiv:1011.5096
How predictive is histone acetylation for gene expression over time? With a focus on key stem cell genes.Mapping dynamic histone acetylation patterns to gene expression in Nanog-depleted Murine embryonic stem cells F. Markowetz, K.W. Mulder, E.M. Airoldi, I.R. Lemischka, O.G. Troyanskaya
PLoS Comp Bio, 2010 Dec 16;6(12):e1001034 PMID:21187909 | doi:10.1371/journal.pcbi.1001034 | arXiv:1010.3268
Constructing networks from single gene pert- urbations. Review based on ISMB 2009 and 2010 tutorials.How to understand the cell by breaking it: network analysis of gene perturbation screens F. Markowetz PLoS Comp Bio, 2010 Feb 26;6(2):e1000655.
PMID:20195495 | doi:10.1371/journal.pcbi.1000655 | arXiv:0910.2938
Systems-level dynamic analyses of fate change in murine embryonic stem cells R. Lu, F. Markowetz, R.D. Unwin, J.T. Leek, E.M. Airoldi, B.D. MacArthur, A. Lachmann, R. Rozov, A. Ma'ayan, L.A. Boyer, O.G. Troyanskaya, A.D. Wetton, I.R. Lemischka. Nature. 2009 Nov 19;462(7271):358-362 PMID:19924215 | doi:10.1038/nature08575
2008
The 'nem' R-package unites software from several labsAnalyzing Gene Perturbation Screens With Nested Effects Models in R and Bioconductor H. Fröhlich, T. Beißbarth, A. Tresch, D. Kostka, J. Jacob, R. Spang, F. Markowetz Bioinformatics, 2008 Nov 1;24(21):2549-50. PMID:18718939 | doi:10.1093/bioinformatics/btn446
An alternative and extended formulation of NEMs including feature selectionStructure Learning in Nested Effects Models A. Tresch, F. Markowetz. Stat Appl in Gen and Mol Bio (SAGMB): Vol. 7: Iss. 1, Article 9, 2008.
PMID:18312214 | doi:10.2202/1544-6115.1332 | arXiv:0710.4481
Computational diagnostics with gene expression profiles C. Lottaz, D. Kostka, F. Markowetz, R. Spang.
Methods Mol Biol. 2008;453:281-96. PMID:18712310 | doi:10.1007/978-1-60327-429-6
2007
Divide-and-conquer approach to efficiently infer NEMsNested Effects Models for High-Dimensional Phenotyping Screens F. Markowetz, D. Kostka, O.G. Troyanskaya, R. Spang. Bioinformatics 2007 23(13):i305-i312 PMID:17646311 | doi:10.1093/bioinformatics/btm178
Comprehensive description of statistical network inferenceInferring cellular networks - a review F. Markowetz, R. Spang. BMC Bioinformatics, 8(Suppl 6):S5, 2007 PMID:17903286 | doi:10.1186/1471-2105-8-S6-S5
Computational identification of cellular networks and pathways F. Markowetz, O.G. Troyanskaya. Molecular BioSystems, 3(7):478-482, 2007 PMID:17579773 | doi:10.1039/b617014p
2006
Computational Diagnostics R. Spang and F. Markowetz In: D. Ganten and K. Ruckpaul (eds.), Encyclopedic Reference of Genomics and Proteomics in Molecular Medicine, Springer, 2006. ISBN: 3-540-44244-8 book website
2005
Nested Effects Models (NEMs) introducedNon-transcriptional Pathway Features Reconstructed from Secondary Effects of RNA Interference F. Markowetz, J. Bloch, R. Spang. Bioinformatics 2005 21: 4026-4032. PMID:16159925 | doi:10.1093/bioinformatics/bti662
Extending statistical perturbation models from knock-outs to knock-downsProbabilistic Soft Interventions in Conditional Gaussian Networks F. Markowetz, S. Grossmann, R. Spang. Tenth International Workshop on Artificial Intelligence and Statistics (AISTATS), Barbados, 2005 pdf
Molecular Diagnosis: Classification, Model Selection, and Performance Evaluation F. Markowetz and R. Spang. Methods of Information in Medicine, 44(3): 438-43, 2005 PMID:16113770 | pdf
2003
Support Vector Machines for Protein Fold Class Prediction F. Markowetz, L. Edler, M. Vingron.
Biometrical Journal 45 (2003) 3, 377-389 doi:10.1002/bimj.200390019
Acetylcysteine for Prevention of Contrast Nephropathy: Meta-analysis R. Birck, S. Krzossok, F. Markowetz, P. Schnülle, F. J. v. d. Woude and C. Braun.
Lancet. 2003 Aug 23; 362(9384): 598-603. PMID:12944058 | doi:10.1016/S0140-6736(03)14189-X
Evaluating the Effect of Perturbations in Reconstructing Network Topologies F. Markowetz and R. Spang.
Proc. of the 3rd Int Workshop on Distributed Statistical Computing, Vienna, Austria, 2003 pdf
2002
Class Discovery in Gene Expression Data: Characterizing Splits by Support Vector Machines F. Markowetz and A. von Heydebreck.
In Proc. of the 26th Annual Conference of the Gesellschaft für Klassifikation e.V., Springer 2002. pdf